Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.
Example 1:

Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
Example 2:
Input: height = [4,2,0,3,2,5]
Output: 9
Constraints:
n == height.length0 <= n <= 3 * 1040 <= height[i] <= 105Trapping Rain Water - LeetCode
https://www.youtube.com/watch?v=C8UjlJZsHBw
// Time Complexity : O(n)
// Space Complexity : O(n)
class Solution {
public:
int trap(vector<int>& height) {
int n = height.size();
int res = 0;
if(n==0)
return res;
vector<int> leftmax(n);
leftmax[0] = height[0];
for(int i=1;i<n;i++)
{
leftmax[i] = max(leftmax[i-1],height[i]);
}
vector<int> rightmax(n);
rightmax[n-1] = height[n-1];
for(int i=n-2;i>=0;i--)
{
rightmax[i] = max(rightmax[i+1],height[i]);
}
for(int i=1;i<n-1;i++)
{
int minht = min(leftmax[i],rightmax[i]);
res+=(minht-height[i]);
}
return res;
}
};
Space Optimized Approach
// Time Complexity : O(n)
// Space Complexity : O(1)
class Solution {
public:
int trap(vector<int>& height) {
int n = height.size();
int res = 0;
if(n==0)
return res;
int left = 0;
int right = n-1;
int maxleft = height[0];
int maxright = height[n-1];
while(left<=right)
{
if(maxleft<maxright)
{
if(height[left]>maxleft)// water can't be stored at this height
maxleft = height[left];
else
res+=maxleft-height[left];
left++;
}
else
{
if(height[right]>maxright)// water can't be stored at this height
maxright = height[right];
else
res+=maxright-height[right];
right--;
}
}
return res;
}
};