Given a collection of numbers, nums, that might contain duplicates, return all possible unique permutations in any order.
Example 1:
Input: nums = [1,1,2]
Output:
[[1,1,2],
[1,2,1],
[2,1,1]]
Example 2:
Input: nums = [1,2,3]
Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
Constraints:
1 <= nums.length <= 810 <= nums[i] <= 10
class Solution {
public:
vector<vector<int>> permuteUnique(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> res;
perm(nums,0,n-1,res);
return res;
}
void perm(vector<int> &nums,int l,int r,vector<vector<int>> &res)
{
if(l==r)
res.push_back(nums);
unordered_set <int> st;
for(int i=l;i<=r;i++)
{
if(st.find(nums[i])!=st.end())
continue;
st.insert(nums[i]);
swap(nums[i],nums[l]);
perm(nums,l+1,r,res);
swap(nums[i],nums[l]);
}
}
};
Complexity Analysis:
Time Complexity: In worst case O(n*n!)
Note that there are n! permutations and it requires O(n) time to print a permutation.