Given a matrix and a target, return the number of non-empty submatrices that sum to target.
A submatrix x1, y1, x2, y2 is the set of all cells matrix[x][y] with x1 <= x <= x2 and y1 <= y <= y2.
Two submatrices (x1, y1, x2, y2) and (x1', y1', x2', y2') are different if they have some coordinate that is different: for example, if x1 != x1'.
Example 1:

Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
Output: 4
Explanation: The four 1x1 submatrices that only contain 0.
Example 2:
Input: matrix = [[1,-1],[-1,1]], target = 0
Output: 5
Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the 2x2 submatrix.
Number of Submatrices That Sum to Target - LeetCode
class Solution {
public:
int numSubmatrixSumTarget(vector<vector<int>>& matrix, int target) {
int m = matrix.size();
int n = matrix[0].size();
int result = 0;
for(int i=0;i<m;i++)
{
vector<int> row(n,0);
for(int j=i;j<m;j++)
{
for(int k=0;k<n;k++)
row[k] += matrix[j][k];
result+=find_result(row,target);
}
}
return result;
}
int find_result(vector<int>& row,int target)
{
unordered_map<int,int> m;
m[0] = 1;
int res = 0;
int curr_sum = 0;
for(int ele:row)
{
curr_sum+=ele;
res+=m[curr_sum-target];
m[curr_sum]++;
}
return res;
}
};
Time complexity O(mnn)
Space complexity O(m)