Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
Constraints:
m == grid.lengthn == grid[i].length1 <= m, n <= 2000 <= grid[i][j] <= 100class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
vector<vector<int>> dp(m,vector<int>(n));
dp[0][0] = grid[0][0];
for(int i=1;i<m;i++)
dp[i][0] = grid[i][0] + dp[i-1][0];
for(int j=1;j<n;j++)
{
dp[0][j] = grid[0][j] + dp[0][j-1];
}
for(int i=1;i<m;i++)
{
for(int j=1;j<n;j++)
{
dp[i][j] = grid[i][j] + min(dp[i-1][j],dp[i][j-1]);
}
}
return dp[m-1][n-1];
}
};