Asked in :

Mathworks

Problem Statement

Given an array arr of positive integers, consider all binary trees such that:

Among all possible binary trees considered, return the smallest possible sum of the values of each non-leaf node.  It is guaranteed this sum fits into a 32-bit integer.

Example 1:

Input: arr = [6,2,4]
Output: 32
Explanation:
There are two possible trees.  The first has non-leaf node sum 36, and the second has non-leaf node sum 32.

    24            24
   /  \\          /  \\
  12   4        6    8
 /  \\               / \\
6    2             2   4

Constraints:

Problem Link

Minimum Cost Tree From Leaf Values - LeetCode

Code

Using DP (TC : O(n^3) , SC : O(n^2))

class Solution {
public:
    int mctFromLeafValues(vector<int>& nums) {
        
        int n = nums.size();
        vector<vector<int>> dp(n,vector<int>(n,0));
        
        vector<vector<int>> max_table(n,vector<int>(n));//stores the max(nums[i]....nums[j])
        
        for(int gap=0;gap<n;gap++)
        {
            for(int i=0,j=gap;j<n;i++,j++)
            {
                if(gap==0)
                    max_table[i][j] = nums[i];
                
                else if(gap==1)
                    max_table[i][j] = max(nums[i],nums[j]);
                
                else
                    max_table[i][j] = max({max_table[i+1][j-1],nums[i],nums[j]});
            }
        }
        
        
            
        for(int gap=0;gap<n;gap++)
        {
            for(int i=0,j=gap;j<n;i++,j++)
            {
                if(gap==0)
                    dp[i][j] = 0;
                
                else if(gap==1)
                    dp[i][j] = nums[i]*nums[j];
                
                else
                {
                    dp[i][j] = INT_MAX;
                    
                    for(int k=i;k<j;k++)
                    {
                        dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]+max_table[i][k]*max_table[k+1][j]);
                    }
                }
            }
        }
        
        return dp[0][n-1];
        
    }
};

Using Greedy (TC : O(n^2) , SC : O(1))