Given a NxN matrix of positive integers. There are only three possible moves from a cell Matrix[r][c].
​Starting from any column in row 0, return the largest sum of any of the paths up to row N-1.
Example 1:
Input: N = 2
Matrix = {{348, 391},
{618, 193}}
Output: 1009
Explaination: The best path is 391 -> 618.
It gives the sum = 1009.
Maximum path sum in matrix | Practice | GeeksforGeeks
class Solution{
public:
vector<vector<int>> dp;
int maximumPath(int N, vector<vector<int>> Matrix)
{
dp.resize(N,vector<int>(N,-1));
int res = 0;
for(int i=0;i<N;i++)
{
dp[0][i] = dfs(Matrix,0,i);
res = max(res,dp[0][i]);
}
return res;
}
int dfs(vector<vector<int>> Matrix,int r,int c)
{
int N = Matrix.size();
if(r<0||r>N-1||c<0||c>N-1)
return 0;
if(r==N-1)
return dp[r][c] = Matrix[r][c];
if(dp[r][c]!=-1)
return dp[r][c];
return dp[r][c] = Matrix[r][c] + max(dfs(Matrix,r+1,c),max(dfs(Matrix,r+1,c-1),dfs(Matrix,r+1,c+1)));
}
};
// Time Complexity : O(n^2)
// Space Complexity : O(n^2)