You are given n balloons, indexed from 0 to n - 1. Each balloon is painted with a number on it represented by an array nums. You are asked to burst all the balloons.
If you burst the ith balloon, you will get nums[i - 1] * nums[i] * nums[i + 1] coins. If i - 1 or i + 1 goes out of bounds of the array, then treat it as if there is a balloon with a 1 painted on it.
Return the maximum coins you can collect by bursting the balloons wisely.
Example 1:
Input: nums = [3,1,5,8]
Output: 167
Explanation:
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
https://www.youtube.com/watch?v=uG_MtaCJIrM&ab_channel=TECHDOSE
class Solution {
public:
int maxCoins(vector<int>& nums) {
int n = nums.size();
int b[n+2];
b[0] = 1;
b[n+1] = 1;
for(int i=1;i<=n;i++)
b[i] = nums[i-1];
vector <vector<int>> dp(n+2,vector<int>(n+2,0));
for(int w=1;w<=n;w++)
{
for(int left=1;left<=n-w+1;left++)
{
int right = left+w-1;
for(int i=left;i<=right;i++)
{
int cost = b[left-1] * b[i] * b[right+1] + dp[i+1][right] +
dp[left][i-1];
dp[left][right] = max( dp[left][right], cost );
}
}
}
return dp[1][n];
}
};
// Time Complexity : O(n^3)
// Space Complexity : O(n^2)